Condenser Tube
Longda has a complete set of manufacturing and testing equipments ,which are the most
Advanced in the technical tube industry .Meanwhile ,we have established an effective
quality management system with strong execution.
We manufacture and control the products in accordance with ASTM (American Society
of Testing Materials) & ASME(American Society of Mechanical Engineers) standards.
1.Copper & Copper Alloys Tube
ASTM B75 ,ASTM B111,ASTM B359,ASME SB75,ASME SB111,ASME SB359
Chinese Standard : JB/T 10503, GB/T 19447 ,GB/T 17791,GB/T1527,GB/T 8890
DIN EN12451,DIN EN12449, EN12452, EN10204
2.Carbon Steel Tube: ASTM A179 ,ASME SA179 ,ASTM A498
3.Stainless Steel Tube :ASTM A213 ,ASTM A268 ,ASTM A803
4.Titanium & Titanium Alloy Tube :ASTM B338, ASTMB861,ASME SB338 ,ASME SB861, GB/T 3624, GB/T 3625, EN17861
Fin Tube Material
Fin Tube Material
China GB
ISO
EN
UNS
JIS
Copper
TP2
Cu-DHP
CW024A
C12200
C1220
Copper
TP1
Cu-DLP
CW023A
C12000
C1201
Admiralty Brass
HSn70-1
CuZn28Sn1As
CW706R
C44300
C4430
Aluminum Brass
HAl77-2
CuZn20Al2As
CW702R
C68700
C6870
Copper Nickel 90/10
BFe10-1-1
CuNi10Fe1Mn
CW352H
C70600
C7060
Copper Nickel 90/30
BFe30-1-1
CuNi30Mn1Fe
CW354H
C71500
C7150
Carbon Steel Tube
10
-
E215
A179
STB340
Stainless Steel
06Cr19Ni10
-
X5CrNi18-10
304
SUS304
Stainless Steel
06Cr17Ni12Mo2
-
X5CrNiMo17-12-2
316
SUS316
Titanium Alloy
TA1
-
TI1
GR1
-
Titanium Alloy
TA2
-
TI2
GR2
-
Range of Available Dimensions
Product Category
Material
Plain End
Finned Dimensions
Condenser Tube
C12200,C12000
C44300,C68700
C70600,C71500
A179
OD
(mm)
End WT
(mm)
Finished Fin OD
(mm)
Norminal Wall under Fin
(mm)
Fin Height
(mm)
FPI
☆
☆
☆
16
1.0
15.80
0.58
0.80
50
☆
☆
☆
16
1.05
15.85
0.60
0.80
50
☆
☆
☆
16
1.15
15.85
0.65
0.85
50
☆
☆
☆
19
1.0
18.90
0.60
0.80
50
☆
☆
☆
19
1.06
18.90
063
0.85
50
☆
☆
☆
19
1.10
18.90
0.65
0.90
50
☆
☆
☆
19
1.20
18.90
0.72
0.90
50
☆
☆
☆
25.4
1.15
25.30
0.65
0.90
50
☆
☆
☆
☆
16
1.20
15.85
0.75
0.80
50
☆
☆
☆
☆
19
1.20
18.85
0.75
0.85
50
☆
☆
☆
☆
16
1.20
15.85
0.78
0.80
50
☆
☆
☆
☆
19
1.20
18.90
0.78
0.80
50
Product Category
Finned Dimensions (Continue)
Condenser Tube
Nominal Outside Surface Area( m2/m)
Actual Outside Surface
Area( m2/m)
Ridge Number
Norminal Ridge Height
Nominal Inside Surface Area(m2/m)
Actual Inside Surface Area( m2/m)
0.050
0.23
20
0.30
0.044
0.048
0.050
0.23
20
0.30
0.043
0.048
0.050
0.235
20
0.35
0.040
0.048
0.060
0.278
24
0.30
0.053
0.064
0.060
0.278
24
0.30
0.053
0.070
0.060
0.28
34
0.35
0.052
0.072
0.060
0.28
38
0.35
0.052
0.075
0.080
0.39
54
0.35
0.072
0.116
0.050
0.23
20
0.30
0.040
0.0478
0.060
0.275
34
0.30
0.052
0.072
0.050
0.23
20
0.30
0.040
0.0478
0.060
0.275
38
0.30
0.052
0.072
Application & Advantage
High Performance Condensing Tube
It is important to enhance the condenser heat transfer performance by either enlarging the heat transfer surface
Area or increasing the heat transfer coefficient. In a condenser ,heat is transferred from the hot ,high-pressure refrigerant vapor to relatively cool water inside the tube .This reduction in the enthalpy of refrigerant vapor causes
It to condense .It changes from vapor to liquid condensate,and is further subcooled before leaving the condenser.
The traditional low fin tube is quite effective compared with the bare tube in increasing the heat transfer surface area and in enhancing the condensate drainage .
In addition ,our condenser tube is further enhanced 3-5 times by applying staggered serrated fin profiles to the exterior surface.It makes the condensate on the outside surface become more turbulent,which enhances the “Gregoring” effect and also improves the convection heat transfer of the condensing liquid film substantially.On the other hand ,the special 3D configuration improves the surface tension effect of the condensate which facilitates the drainage of condensing liquid flow from the fin tip to the helically arranged fin root channel.Additional inner ridges have further enhanced the overall thermal performance since they have further enhanced the overall thermal performance since they have increased heat transfer surface area and cause more turbulent flow in tube side.